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WHY SHEAR STRENGTH AND FRICTION (or lack
of these) ARE IMPORTANT?

» Walking upright (or falling over)
» Mountains and valleys (or featureless terrain, no HEP)
» Cliffs, pebble beaches, sand dunes (or flooding)

Petroleum traps: salt, shale, clay-cores in faults (or
petroleum loss through seeps)?

Gas-shale and oil-shale production (or rapid decline)
Dam stability (or failure)
Road cuttings (or road closures)

Open pit and bench stability (or failures and equipment-
damage)

Tunnel and cavern stability (or collapses)
Fault stability (or earthquakes)
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Content of Lecture

INTACT ROCK - CRITICAL STATE — A NEW CRITERION
ROCK JOINTS — NO COHESION - TESTING PROBLEM
SCALE EFFECTS for ROCK JOINTS

STRESS TRANSFORMATION ERRORS: NO DILATION
ROCK MASSES - displacement-and-process dependent
CANNOT ADD ‘c’ and ‘ontan @’ — NOT COINCIDENT

A SIMPLE (-minded) ALTERNATIVE TO H-B/GSI: SPLIT Qc

CONCLUSIONS



1. INTACT ROCK



LINEARITY or
NON-LINEARITY ?



Numerous courses
with petroleum and
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THE REALITY — IF A LARGE RANGE OF STRESS IS INVOLVED (e.g.
AS IN MINING AND PETROLEUM ENGINEERING) (Barton 1976, 2006)
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which influenced opinions

(Mogi 1966). Silicates and carbonates
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Critical state

concept recently

1 = Uniaxial Tension

4 = Critical State

~
~

2 = Uniaxial Compression -
3 = Brittle-Ductile Transition
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used as basis for
Improved strength
criterion for intact
rock.

The simple correct-
curvature formulation,
Indicates how much
deviation from Mohr-
Coulomb to match the
strong curvature up to
the critical state.

(0, =30,
suggestion, and this
figure from

Barton, 1976, 2006).

Note proximity of o,
and O3 . itical. ?



The ‘critical state’ concept was applied to better
define the curvature of the shear strength
envelopes for intact rock.

A few triaxial tests at low confining pressures
provide all the data needed for extrapolation to
high levels of confinement.

The elegant Singh et al., 2011 criterion gives the
correct deviation from linear Mohr Coulomb

(= greater curvature than Hoek Brown, for which
triaxial tests over a wider range of stress are
needed)

10
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From Singh et al., 2011
1. Objective

2. Example
Mohr-Coulomb criterion
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MOST FREQUENTLY:

O3 (CRITICAL) = Oc (Singh-Singh, 2011)

Brittle Ductile

) ...TRANSITION

1 = Uniaxial Tension ~~ —

2 = Uniaxial Compression

3 = Brittle-Ductile Transition

4 = Critical State o, 20.3 3
|

- q -
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Modified Mohr-Coulomb criterion for non-linear triaxial and polyaxial
strength of intact rocks
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Article history: Triaxial or polyaxial strength of rocks is required while analysing many civil and mining engineering
Received 10 February 2010 structures in rocks. Mohr-Coulomb criterion is the most widely used strength criterion in rock
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engineering problems. In its present form the criterion suffers from two major limitations. Firstly, it
represents the strength of rock as a linear function of confining pressure. Secondly, the effect of
intermediate principal stress is not considered by this criterion. In the present study, this criterion is
modified to take into account the non-linearity and effect of intermediate principal stress on strength
Keywords: behaviour. Barton’s [1] critical state concept for rocks has been employed for this purpose. The
Intact rock applicability of the proposed simple non-linear triaxial and polyaxial strength criteria has been verified

;Sla}:iilal by applying them to experimental results for the intact isotropic rock material available from literature
S[rgng[h and comparing the prediction with the other popular criteria in vogue. The agreement has been found

Criterion to be excellent. The applicability of the concept to jointed rocks will be discussed in separate
publication.




The Singh-Singh criterion is a ‘continuous’ alternative

to these classical criteria.
(From Gudmundsson, 2011)

von Mises

Griffith




A SIMPLE-MINDED,
TWO-PARAMETER
ALTERNATIVE
(Need only gradient M and UCS)



(0'1 - 0'3)/O'C =M 03/0'1 +1.0 (Barton, 1976)

M-values: Solenhofen limestone = 3, Oak Hall limestone = 7,
Nahant gabbro =9, Westerly granite = 30
Triaxial data from Byerlee, 1968.
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2. ROCK JOINTS

DO ROCK JOINTS HAVE
REAL COHESION?

(‘everybody’ quotes ‘c’ and ‘¢’ ??)



Only the 2nd (stepped) set
of tension fractures has
actual cohesion (NB, 1971)




EVEN THESE ROUGH
TENSION FRACTURES

HAVE NO ACTUAL
COHESION UNLESS

STEPPED (

")

secondary

FRACTURES ARE TESTED
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Peak strength criterion for the tension fractures

(------ = no decimal places, from Barton, 1971)
T=0ntan [ 20 log( UCS/cn ) + 30° ]
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SHEAR BOX

DIRECT SHEAR TESTS ON REAL
ROCK JOINTS (130 samples)
kA CONFIRMED BARTON, 1973

e &\/ SUGGESTION of VARIABILITY

e 20’ (became variable JRC)
‘UCS’ (became variable JCS)

ppppp (I)b (no weathering) Barton, 1973, 1976
strength

et (I)r (weathered joints) Barton & Choubey, 1977




T=0, ftan &, + ¢

Mohr - Coulomb

T

Patton i d2 i3 i

=dntan ¢r"‘c
T=0p tan (P + 1)

T = d, tan [JRC log ( LS

JRC

an

= joint roughness coefficient

JCS = joint wall compression strength

o, = residual friction angle

)+¢..] (o




int samples. Roughness

measurement and tilt test
( Barton and Choubey, 1977)
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TYPICAL ROUGHNESS PROFILES for JRC range:

VISUAL MATCHING OF ROUGHNESS —

for JRC: SIMPLE but LIMITATIONS
(Barton and Choubey, 1977)
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The tilt test has its origin in characterizing rock joints (Barton and
Choubey,1977). Equipment is ultra-simple. Stress application is
ultra-uniform (= gravity). Transfer: TerraTek to Schlumberger.



For those who
don’t trust in
profile
matching for
JRC —do tilt
tests as NB &
VC, 1977
always
recommended




Shear stress (MPa)
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130 rock-joint samples
(Barton and Choubey, 1977)

Three curved peak shear
strength envelopes
shown:

1.Maximum strength
with JRC=16.9

2. Mean parameters
JRC=8.9,

JCS=92MPa

br=282

3. Minimum strength
with @r=26°



Note: the original tension
fracture-based equation
(Barton, 1971) was:

BARTON-BANDIS (scaled)

Tt=on.tan | 20. log( UCS/ 6n) + 30°
T= Un.fanDR[n,[og(Jcs’")+ o, [ of ) |

: / 1/

’ Now: JRC JCS @b (now Pr)

TO THOSE WHO HAVE PERFORMED PH.D.’s AND ARE SELLING
soFTWARE - PLEASE NOTE IT IS ¢@r since 1977 !!

(Error due to ‘downloadable rock mechanics’)



EXAMPLE of ROUGHNESS CONTRAST — DST YUCCA MOUNTAIN
(NON-LITHOPHYSAL UNIT)




JCS < UCS

(UCS in all the
‘islands’ not

cut by the
waves)

31



SHEAR BOX AND INDEX TESTING OF ROCK JOINTS
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ADDITIONAL CAUSE OF
‘BELIEF IN COHESION’

(why so many think it actually exists)



PEAK SHEAR STRENGTH, t (MPa)
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Peak dilation
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ISRM, TEST LABS
recommendation
of pre-loaded
multi-stage shear
testing
(of same sample)
if insufficient rock
joint samples.

Results in
‘rotation’ of the
strength
envelope......
therefore
artificial
‘cohesion’



AN OVER-LOOKED
COMPONENT OF SHEAR
STRENGTH



The angular components of peak shear strength, with
asperity strength (Sa), and peak dilation angle (dn )
each included. (Barton, 1971)

37



Asperity

strength
Sa

A PEAK due to

E \ highly
3 o e stressed,

” failing
s - ; . - asperities
. e i > 4 (j.e.hasto

: =
| of’
v 2 contraction J i be more

than just a
dilation
angle).



i |ASPERITY
‘{FAILURE

| 7| |[COMPONENT y

@ ROUGHNESS _ .o
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= 4/A |GEOMETRICAL
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<
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X TOTAL

i

FRICTIONAL ©°+ i
RESIDUAL OR] RESISTANCE

BASIC
FRICTIONAL ———T

COMPONENT

1] |2 3 4
SHEAR DISPLACEMENT

The asperity component Sa (Barton, 1971 and Bandis, 1980) .
JRC (or @r) cannot be back-calculated by only subtracting
dilation (dn) from peak strength.

®: or ®» would then be dangerously too high

(and/or JRC would be incorrect).
This is a ‘common’ Ph.D error! 39



Stress Ratio

-Dilation angle, /°
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ez incremental dilation T, / Oy
0 | i . - T | '15

Horizontal Displacement (mm)

Hencher error: tan * (t/c,) minusd # ¢,
What to do with so-called ‘¢’ values of 40°??



3. SCALE
EFFECTS

concerning
ROCK JOINTS
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Engineering Crustal

T(MPa) lcn T (kbar) e
—, T
9 —_—
8 '..—.‘
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c!
100 200 300 400 500 600 (MPa) L
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Figure 1. Different magnitudes of scale effect are expected under high and low stress.
Adapted from Barton (1976). Additional data from Byerlee (1978).

Many
hundreds of
DST and post

-fracture
triaxial data
collected.

Barton, 1990.

(Loen scale-
effects
workshop)

Byerlee, 1968
suggests
t=0.850n?



FORCE

SHEAR

1600 | JllC"o = 16-1 (mean)
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(Bandis et al. 1981)
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JRC0/IRC ek

EXAMPLE ¢
10 450
The JRCmobilized
-
os T—F {8 concept
32
0 ] ’ : 4.0 30°
gggﬁg?« (Barton, 1982)
AT JRC,,, =0 ( S/Speak)—’
I 5 | rom =4, -4, ENABLES
> % e i=JRc.|og["CSJ
: o | <on | stare e STRENGTH-
01 | e | s | | ' DISPLACEMENT-
z 1.0 1.0 Ppeak EXAMPLE:
g 2.0 0.85 l ) DILA TION
N 4.0 0.70 ¢r =30°,i=15°
598 oo | 0" [teme IR ™ MODELLING
—— 201 -(¢,/1) 0°




3.0

25F

Shear stress (MPa)

1.0
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0
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Dilation (mm)

05

20F

1.5F

Onh=2MPa
® Laboratory test L=01m

L=1m
)

In situ

block

)

o)

Or = 30° residual

¥ £ Assumed @ @ @
natural
block size Lab In situ Natural
test bloc!

2 meters test ks
JRC 15 75 6.6

15

1.0

JCS 150 50 40 MPa
6 peak 1.0 4.0 6.1 mm
30° 30° 30

lllllllllllllll

1
O = 2MPa

In situ block test

- L=1m >

- Laboratory test

L EJL=0.1m .

O,
\ Assumed T
natural block
size 2 meters

Shear displacement (mm)

p—— . ¢}

Shear stress-displacement and
dilation-displacement
modelling (Barton, 1982), with
scale effect from

Bandis et al.1981.

Note scale effect on
shear stiffness (Ks),
which is strongly
scale-and-stress-
dependent.

LOOK OUT FOR ‘Kn = Ks’
In some numerical models!!

(Usually Ks = 1/50 x Kn)
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Well-jointed
wedge.

Remains in
place
because of
the higher

shear

strength of
the smaller
component

blocks ?




Larger block(s)

(failure at much shallower angle of dip)




4. STRESS
TRANSFORMATION
ERRORS?



o, and o, transformed to rand o,

The classic equation assumes co-axial stress and
strain, no discontinuity, no shearing, no dilation.

Potential failure surfaces in geotechnical materials
(obviously) cannot satisfy these basic
assumptions.

Rock joints, rock masses, rockfill, OC-clay, dense
sand (i.e. most geo-materials) shear and dilate
where we require the stress transformation.

What can we do’?....... add mobilized dilation.
51



Diagonally fractured 1 m3 blocks, usually ‘refusing’ to shear when

expected.(Initial diagonal fractures were generated in controlled o1

stress field. Then biaxial loading using flat jacks.)

52
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Very large-
scale tilt
tests (see
angle a)
with
roughness
profiles

(Bakhtar and
Barton,1983)
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Nearly a ‘rock
mechanics injury’
— due to incorrect

theory. The
sample would not
shear! Flat-jack
burst at 28 MPa.



CORRECTION FOR OUT-OF-PLANE DILATION
(AND BOUNDARY FRICTION) NEED TO BE MADE
(Bakhtar and Barton, 1984)

THEORETICAL

SHEAR STRESS

04
S
6o ’
S P
i £
% . /‘: %
Z 6c |[S2
B
DS
. o
Dilation d,, 1
@

Y

@ Theoretical

® nDpitation

corrected

®) Fully

corrected

NORMAL STRESS

_
On = — (04+0y )- -12-(01' g2) cos 23

T ;—(o — ) sin 2

DILATION CORRECTED

O =—12— (o +02)..i2(cr1 - 0y) cos 2[ B + dp mob]|

T :—;— (0'1_.0'2) snn2[[3 +(j|n mob]
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5. ROCK MASSES

FAILURE IS PROCESS-AND-
DISPLACEMENT DEPENDENT

ONE THEREFORE CANNOT
ADD ‘c’ and ‘on tan @’



SHEAR STRENGTH OF 2D ‘ROCK MASSES’
APPEARS TO BE BLOCK-SIZE DEPENDENT.
SMALL BLOCKS GIVE HIGHER STRENGTH,

EVEN THOUGH (WEAK) FRACTURE

ZONES ARE OFTEN ASSOCIATED WITH

LOWER STRENGTH: DUE TO LOW Jr,
HIGH Ja (i.e. CLAY-FILLINGS)

PLANE STRESS
BIAXIAL TESTS
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2D MODELS PHYSICAL
.« | MODELS (also UDEC-BB)

"™ SHOW VARIOUS ‘NON-

CONTINUUM’

g CHARACTERISTICS:

=1.73

— e
e

— ~ "LOCAL SHEAR
1=0.92

veozs 250 20 | INCREASING ‘POISSON
Mo RATIO’ (>> 0.4999)
1 1 1 | 1 1 1
T PHOCKROTATIONS
, TRANSLATIONAL
SHEARING
BR58558
LINEARIZED STRESS-
) 'STRAIN’ IF SMALL
< BLOCKS (SIMILAR TO
BASALT CROSS-COLUMN

LOADING)



THE REALITIES OF ROCK MASS SHEAR STRENGTH

PROCESS-AND-STRAIN-DEPENDENT FAILURE

INTACT BRIDGES FAIL, BLOCK CRUSHING, AT SMALL
‘STRAIN’

NEWLY CREATED FAILURE SURFACES WITH
high JRC, JCS, ¢@r = @b, SHEAR NEXT AT SMALL 'STRAIN’

SURROUNDING NATURAL JOINTS with lower JRC, JCS,
¢r, SHEAR NEXT AT LARGER ‘STRAIN’

DISCONTINUITIES WITH CLAY, FAULTS, MOBILIZE AT
STILL GREATER ‘STRAIN’

ALL THE ABOVE ARE BEYOND Q, BEYOND GSI/H-B



WHAT IF THE SCALE OF
THE PROBLEM DEMANDS
A CONTINUUM
APPROACH?



CHANGE NEEDED

CONVENTIONAL
continuum
modelling methods.

Poor simulation with
Mohr Coulomb or
Hoek and Brown
strength criteria.

(Hajiabdolmajid, Martin
and Kaiser, 2000
“Modelling brittle
failure”, NARMS)

So why performed by
SO many
consultants? €

. . . Elastic-Brittle
« Shear failure o Tensile failure I

> £

Elastic-Plastic




JOBTITLE :

FLAC (Version 3.30)
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Degrade cohesion, mobilize friction: excellent match.
( Hajiabdolmajid, Martin and Kaiser, 2000 “Modelling brittle failure”, NARMS.)



A FRESH APPROACH USING A
COMMON SOURCE OF INPUT DATA
IQI
(that includes fundamentals like
stress and number of joint sets)

(BUT AN AS YET LITTLE TESTED

ESTIMATE OF
ICI AND ld)l)



BROAD-REACH CLASSIFICATION NEEDED — LARGE NUMERICAL RANGE




Strength contrast, modulus contrast,
constructability contrast (15 years/1 year)!
0.001—>1 OOO, or 595, or FT—F1 ?7?7?

ﬂ ‘ '5‘%&.&! |
Jz‘r’f’ ;«:Eﬁ*—v' e

h ’




NEED SCISSORS, TO CUT THE
Qc-formula in TWO PARTS




CCand FC from Qc = Q x 0¢ /100 :
Qc = RQD/Jn x Jr/Ja x Jw /SRF x O¢ /100)

CC = cohesive strength ( the component of the rock mass g
requiring shotcrete)

FC = frictional strength (the component of the rock mass
requiring bolting).

Cut Qc into two halves —’c’ and ‘@’
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RQD|J,] 3, [3,] 3, [SRF| Q |o.| Q. |Fce|cC MPalv, kmis|E,,. GPa
100 2|2 (1| 1 | 1 | 100 |100| 100 |63°| 50 5.5 46
9 | 9|1 |1| 1| 1| 10 [100| 10 |45°| 10 45 22
60 |12|15|2|066| 1 | 25 |50 | 12 |26°| 25 3.6 10.7
30 |15| 1 | 4|066| 25| 013 |33 | 004 | 9° | 026 2.1 3.5

Four rock masses with successively reducing character: more
joints, more weathering, lower UCS, more clay.

Low CC —shotcrete preferred Low FC - bolting preferred
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cC =
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GSI (=RMR-5)
based algebra
for
‘c’and ‘@’

contrasted
with

Q-based
‘empiricism’

Note:
shotcrete
needed when
low CC,
bolting
needed when
low FC.



‘C then On tan phi’ (as used in Barton and Pandey, 2011)
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BUT — WHERE IS
THE CONTINUUM
BEHAVIOUR (?)
WHEN FAILURE IS
APPROACHING



A} LI T

ST ZEien  Borehole

stability

studies at
NGI.

(Joint Industry
Project). Addis et
al., SPE, 1990.

Drilling into
O1 > 02 >03
loaded

cubes
0.5x0.5x0.5m

of model
sandstone




(Stress-fracture/burst prediction in deep TBM
tunnels. NB&A 2005 report). WHERE IS THE
CONTINUUM WHEN FAILURE APPROACHES?




CONCLUSIONS

1. NON-LINEAR SHEAR STRENGTH, NO COHESION FOR ROCK JOINTS
2. MULTI-STAGE TESTING ‘GENERATES’ ARTIFICIAL ‘COHESION’

3. ARE WE TRANSFORMING STRESSES CORRECTLY IN OUR DILATANT
GEO-MATERIALS (OC-clay, dense sand, rock joints, dense rockfill, etc?)

4. STRENGTH CRITERIA SHOULD BE DERIVED FROM ORIGINAL
SOURCES, NOT FROM ‘DOWN-LOADED’ ROCK MECHANICS

5. CANNOT ADD ‘c’ AND ‘tan ¢’ — THEY ARE NOT MOBILIZED TOGETHER
(APPLIES TO MUCH OF ‘POPULAR’ MODELLING IN ROCK MECHANICS

6. INVITATION TO STRONG SWIMMERS: ‘SWIM UPSTREAM’ AGAIST THE
CURRENT
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STABLE BECAUSE OF SHEAR STRENGTH — MANY PARAMETERS
INVOLVED — A QUESTION OF TASTE FOR WHICH ONES PREFERRED
— COULD BE CC and FC FROM Q ? (BUT CC then FC).




